|
Одной из основных предпосылок использования в современном строительстве стеновых ограждающих конструкций с вентилируемыми фасадами является уверенность в их высоких теплозащитных свойствах, которые позволяют достигнуть современных повышенных требований по теплозащите зданий.
При этом предполагается, что никаких серьезных теплофизических проблем при применении этих конструкций не возникает.
Накопленный опыт использования вентилируемых фасадов показывает обратное. Снижение теплофизического качества рассматриваемых конструкций объясняется дефектами, которые вызваны ошибками проектирования и монтажа фасадов.
Добиться того, чтобы расчетное значение сопротивления теплопередаче соответствовало требуемому по второму этапу энергосбережения, не всегда удается. Это объясняется тем, что применяемые в вентилируемых фасадах металлические кронштейны, являются «мостиками холода» и существенно снижают коэффициент теплотехнической однородности.
Так, при использовании кронштейнов из алюминия расчетный коэффициент теплотехнической однородности конструкции практически не превышает значения r = 0,7 . И это без учета влияния оконных откосов, которые еще более снизят этот коэффициент.
В результате для достижения требуемого для климатических условий Санкт-Петербурга значения сопротивления теплопередаче стен жилых зданий R0пр = 3,13 м2•°С/Вт необходим слой минераловатного утеплителя толщиной около 0,20 м. С учетом толщины воздушного зазора 40–60 мм, вылет кронштейна должен составлять не менее 0,25 м, что влечет необходимость его усиления и повышения металлоемкости подконструкции и стоимости фасада.
В связи с этим при проектировании вентилируемых фасадов часто применяют следующий прием. Без всякого обоснования или со ссылкой на сомнительные источники принимают значение коэффициента теплотехнической однородности конструкции равным r = 0,85–0,90, после чего рассчитывают необходимую толщину слоя минераловатной теплоизоляции, которая получается равной 0,10–0,15 м. Такой прием является типичным и имеет место при проектировании многих объектов.
Недостаточный учет кривизны стены, на которую осуществляется монтаж фасада
Вентилируемые фасады позволяют «выровнять» искривленную поверхность стены, на которую они монтируются. Эта возможность является одним из достоинств их применения. Вместе с тем, нельзя допускать, чтобы она реализовывалась с ущербом для выполнения вентилируемым фасадом других функций.
При проектировании вентилируемых фасадов стремятся ограничить вылет кронштейнов. Это вызывает:
• частичное расположение направляющих и других элементов подконструкции в слое теплоизоляции;
• расположение гидроветрозащитной пленки не по утеплителю, а по направляющим, что, в свою очередь, еще больше уменьшает ширину воздушного зазора;
• снижение ширины воздушного зазора вплоть до его полного отсутствия
Расположение направляющих в слое теплоизоляции, с точки зрения строительной теплофизики, невыгодно тем, что снижает коэффициент теплотехнической однородности.
Расположение гидроветрозащитной пленки не по утеплителю, а по направляющим приводит к затруднению движения воздуха в воздушном зазоре, что препятствует удалению влаги из зазора.
Закрепление пленки не по поверхности утеплителя, а на расстоянии от него вызывает ее колебания, что, с одной стороны, может сопровождаться звуковыми эффектами, а с другой стороны, понижает ее долговечность.
Гидроветрозащитная пленка расположена поверх горизонтальных направляющих
Отсутствие воздушного зазора или недостаточная его ширина при некоторых условиях может вызвать скопление влаги и переувлажнение утеплителя. Таким образом, представляется целесообразным установить требования к ограничению кривизны стены, на которой предполагается монтаж вентилируемого фасада. Проектирование фасада нужно осуществлять с учетом фактической кривизны поверхности стены так, чтобы соблюдалась ширина воздушного зазора, определенная из условия влагоудаления.
Отсутствие вентиляции воздушного зазора фасада
На некоторых зданиях применяются фасадные системы, в которых воздушный зазор фактически не вентилируется. К таким фасадным системам относятся, прежде всего, те, в которых отсутствует вход в воздушный зазор и отсутствуют зазоры между элементами облицовки.
Встречаются также решения фасадов, в которых вход в воздушный зазор предусмотрен, но вентиляция в нем затруднена из-за большого сопротивления движению воздуха.
Фасадная система с облицовочными элементами из композитного материала с отсутствующими зазорами между облицовочными элементами и с отсутствующим входом в воздушный зазор
В таких случаях влага, попадающая в воздушный зазор из помещений вследствие влагопереноса через стену и слой теплоизоляции, почти не выходит в наружный воздух, скапливаясь в зазоре и увлажняя теплоизоляцию. Вследствие этого снижается долговечность минераловатного утеплителя и его теплозащитные свойства.
В качестве обоснования для применения невентилируемых фасадов иногда ссылаются на зарубежный опыт эксплуатации таких фасадных систем в странах с теплым климатом (Италия, Турция и т. д.). При этом совершенно не учитываются особенности нашего климата, «не прощающего» подобные ошибки, и более высокие требования к теплозащите зданий в нашей стране.
В наших условиях теплозащитные свойства ограждений «востребованы», главным образом, в отапливаемый период года, когда температура и влажность воздуха в помещении выше, чем наружного воздуха, влагоперенос осуществляется от внутреннего воздуха к наружному.
В странах с теплым и влажным климатом административные здания снабжены системой кондиционирования воздуха. Перепад температуры и влажности воздуха по разные стороны ограждений большую часть года имеют противоположную направленность, по сравнению с условиями в России.
Следовательно, проблема влажностного режима ограждений, в нашем понимании, незнакома южным строителям, и к их рекомендациям следует относиться скептически. В частности, вентилируемые фасады должны вентилироваться.
Неправильное проектирование узлов примыкания оконных блоков
При проектировании узлов примыкания оконных блоков к стене с вентилируемым фасадом основные ошибки заключаются в установке по контуру оконных блоков металлических элементов, которые являются мощными теплопроводными включениями. Необходимо проводить расчеты температурных полей, анализ которых поможет избежать дополнительных теплопотерь и промерзания элементов блоков и оконных откосов.
Отсутствие учета воздухопроницаемости стен
При проектировании наружных стен с вентилируемыми фасадами практически не обращается никакого внимания на воздухопроницаемость стен. Эта проблема актуальна, поскольку, с одной стороны, минераловатный утеплитель обладает повышенной воздухопроницаемостью, а с другой стороны, в верхней части здания может быть значительная эксфильтрация воздуха, обусловленная перепадом давлений за счет теплового напора.
В зимнее время воздух, содержащий водяной пар, фильтруется из помещения через стену и утеплитель в воздушный зазор, при этом водяной пар конденсируется в утеплителе, повышая его влажность.
Во многих случаях стены, на которые крепятся конструкции вентилируемых фасадов, выполняются из кирпичной кладки или ячеистобетонных блоков. Сопротивление воздухопроницанию таких стен чрезвычайно мало, оно не превышает 18 м2•Па/кг.
Так, для одного из зданий при высоте 200 м для климатических условий января в Санкт-Петербурге требуемое сопротивление воздухопроницанию составило 2 450 м2•Па/кг (для сравнения: сопротивление воздухопроницанию слоя штукатурки цементно-песчаным раствором по каменной или кирпичной кладке толщиной 15 мм составляет 373 м2•Па/кг). В этом случае необходимо снижение требуемого сопротивления воздухопроницанию путем изменения конструкции вентилируемого фасада.
Заключение
Вентилируемые фасады являются сложными конструкциями, использующими разнородные по своим свойствам материалы. Кажущиеся незначительными ошибки, допускаемые при создании таких конструкций, могут иметь серьезные последствия. Выше рассмотрены некоторые ошибки, касающиеся теплофизических аспектов, допускаемые при проектировании вентилируемых фасадов.
Следует иметь также в виду, что, помимо теплофизических, существуют и другие проблемы (прочностные, коррозионные и т. д.), решение которых необходимо для надежной эксплуатации вентилируемых фасадов зданий. При проектировании вентилируемых фасадов необходимо комплексное рассмотрение многих аспектов с учетом их взаимного влияния.
|